Citizens must be able to argue from evidence

- Complex global issues, like climate change and fake news, require citizens who can make decisions and argue from scientific evidence.¹
- Students need opportunities to develop these skills.² Instructors need methods to assess the structure and content of students’ arguments.³,⁴
- We propose a framework that characterizes student arguments in three dimensions: reasoning, granularity, and comparisons.

Phase 1: identifying concepts, links, and comparisons

What concepts are discussed?

The equilibrium will favor the products...

...NaH’s conjugate acid is H₂, which has a pKₐ of 36...

...indicates the side with the weaker acid.

Which concepts are linked?

The equilibrium will favor the products... because

...NaH’s conjugate acid is H₂, which has a pKₐ of 36...

this is relevant because

...it indicates the side with the weaker acid.

Which concepts are used to compare?

The equilibrium will favor the products because NaH’s conjugate acid is H₂, which has a pKₐ of 36. This is relevant because it indicates the side with the weaker acid. To compare, both H₂O and ‘NH₄ have pKₐ values lower than H₂.

Phase 2: identifying the argument’s level of granularity, reasoning, and comparison

Level of granularity

- pKₐ values
- Direction of equilibrium
- Conjugate acid strength
- Reaction
- Molecular
- Atomic

Concepts in the argument reach a molecular level of granularity

Mode of reasoning

- Direction of equilibrium
- pKₐ values
- Conjugate acid strength
- Descriptive
- Relational
- Linear-causal
- Multi-component

Argument connects concepts in a linear-causal mode of reasoning

Level of comparison

- Conjugate acid strength
- Direction of equilibrium
- pKₐ values
- Discussed in isolation
- Compared against other claims

Argument uses some (not all) concepts to partially compare between claims.

Learn more: FlynnResearchGroup.com
